Benefits provided by partitions of unity with high regularity in crack modeling through enrichment procedures

Diego Amadeu F. Torres
Clovis S. de Barcellos
Paulo de Tarso R. Mendonça

Department of Mechanical Engineering
Federal University of Santa Catarina
Brazil
Motivation

GFEM-C^0

GFEM-C^k
Presentation topics

- Continuous partition of unity with C^k-GFEM
- Defining an approximation subspace
- Enrichment patterns and convergence rates
- Quality assessment through global measures
- Configurational forces method
- Quality assessment through local measures
- Smoothness, enrichments and conditioning
- Some improvements beyond...
C\(^\infty\) partition of unity – convex clouds

- No shape restrictions
- No coordinate mapping
- Flat-top property
- Simple numerical integration
- Blending

Edwards, *C\(^\infty\) finite element basis functions*, Report 45, Institute for Computational Engineering and Sciences – The University of Texas at Austin, 2006
\[\xi_j (x) = n_{\alpha,j} \cdot (x - b_{\alpha,j}) \]

\[k = \infty \quad \text{No restriction of patch shape} \]
\[k = p - 1 \quad \text{Free of coordinate mapping!} \]

Edwards, \textit{C\infty finite element basis functions}, Report 45, Institute for Computational Engineering and Sciences – The University of Texas at Austin, 1996

Barcellos, Mendonça and Duarte, \textit{A Ck continuous generalized finite element formulation applied to laminated Kirchhoff plate model}. Computational Mechanics, 44 (2009)
Continuous partition of unity with GFEM

Defining an approximation subspace

Quality assessment through global measures

Eshelbian mechanics

Quality assessment through local measure

Cloud-based residual error estimation

Some improvements beyond

\[\mathcal{W}_\alpha (x) := \prod_{j=1}^{M_\alpha} \varepsilon_{\alpha,j} (\xi_j) \]

\[\varphi_\alpha (x) = \frac{\mathcal{W}_\alpha (x)}{\sum_{\beta(x)} \mathcal{W}_\beta (x)}; \]

\[\beta (x) \in \{ \gamma \mid \mathcal{W}_\gamma (x) \neq 0\} \]
Galerkin approximation

\[u_p(x) = \sum_{\alpha=1}^{N} \varphi_\alpha(x) \left\{ u_\alpha + \sum_{i=1}^{q_\alpha} L_{\alpha i}(x) b_{\alpha i} + \sum_{j=1}^{q^s_\alpha} L^s_{\alpha j} b^s_{\alpha j} \right\} \]

if \(p=3 \)

\[L_{\alpha 9}(x, y) = \left\{ \bar{x}, \bar{y}, \bar{x}^2, \bar{x} \bar{y}, \bar{y}^2, \bar{x}^3, \bar{x}^2 \bar{y}, \bar{x} \bar{y}^2, \bar{y}^3 \right\} \]

e.g.

\[\bar{x} := \frac{x - x_\alpha}{h_\alpha} \]

Quality assessment through global measures

Configurational forces method

Quality assessment through local measures

Smoothness, enrichments and conditioning

Some improvements beyond...
Defining the degree of an approximation

\[b = p + 1 \quad \text{for } C^0 \text{ PoU (conventional tent FEM shape function)} \]

\[b = p \quad \text{for } C^k \text{ PoU} \]

\[b = \text{degree of reproducible polynomial} \]

\[p = \text{degree of polynomial enrichment} \]

Enrichment pattern X convergence rates

Topologic enrichment

Continuous partition of unity with C-GFEM
Defining an approximation subspace
Enrichment patterns and convergence rates
Quality assessment through global measures
Configurational forces method
Quality assessment through local measures
Smoothness, enrichments and conditioning
Some improvements beyond...
Convergence in terms of global values

(a) Rate $C_k > rate \ C_0$;
(b) Error $C_k < error \ C_0$ for $b=1,2,3,4$.
Local measure using configurational forces

Variational balance of material linear momentum

\[\Sigma (u) = \mathcal{W} (u) \mathbb{I} - \mathbb{L}^T (u) \sigma (u) \]

Eshelby tensor

\[\Sigma = \{\Sigma_x, \Sigma_y, \Sigma_{xy}, \Sigma_{yx}\}^T \]

\[\mathcal{W} = \frac{1}{2} \sigma^T \varepsilon \]

\[\int_{\Omega} (\mathbb{L} \mathbf{v})^T \Sigma l_z \, d\Omega = \int_{\Omega} (\mathbf{v})^T \varrho l_z \, d\Omega \]

Inhomogeneity force

\[\varrho = \{\varrho_x, \varrho_y\}^T \]

\[\mathbf{v} = \{v_x, v_y\}^T \]

\[\mathbb{L}(u) = \mathbb{L} \mathbb{I} u \quad \mathbb{I}^T = \{1, 1, 0, 0\} \]

\[\mathbb{L} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \end{bmatrix} \quad \mathbb{L} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} & 0 \\ 0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial x} \end{bmatrix} \quad \mathbb{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
Convergence in J-integral

Geometric enrichment

(a) Rate $C_k > rate C^0$;
(b) Error $C_k < error C^0$ for $b=1,2,3,4$.

GFEM-Ck
Topologic enrichment pattern

M1

M2

M3

M4

Branch functions and p-enrichment on green nodes

Continuous partition of unity with C-6FEM
Defining an approximation subspace
Enrichment patterns and convergence rates
Quality assessment through global measures
Configurational forces method
Quality assessment through local measures
Smoothness, enrichments and conditioning
Some improvements beyond...
Convergence in terms of global and local values

Topologic enrichment

Energy

J-integral

Quality assessment through global measures

Configurational forces method

Quality assessment through local measures

Smoothness, enrichments and conditioning

Some improvements beyond...

C0

Ck

M1, M2, M3, M4

p – convergence!
Convergence rates for h-refinement

<table>
<thead>
<tr>
<th>enrichment pattern</th>
<th>PoU</th>
<th>$b = 1$</th>
<th>$b = 2$</th>
<th>$b = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometric R1</td>
<td>$C^0(\Omega)$</td>
<td>0.33</td>
<td>0.91</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>$C^\infty(\Omega)$</td>
<td>0.33</td>
<td>0.91</td>
<td>1.43</td>
</tr>
<tr>
<td>geometric R2</td>
<td>$C^0(\Omega)$</td>
<td>0.24</td>
<td>0.74</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>$C^\infty(\Omega)$</td>
<td>0.34</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td>topologic</td>
<td>$C^0(\Omega)$</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>$C^\infty(\Omega)$</td>
<td>0.29</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>theoretical category A</td>
<td></td>
<td>0.50</td>
<td>1.00</td>
<td>1.50</td>
</tr>
<tr>
<td>theoretical category B</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Continuous partition of unity with GFEM
Defining an approximation subspace
Quality assessment through global measures
Eshelbian mechanics
Quality assessment through local measure
Cloud-based residual error estimation
Some improvements beyond

Condition number Nc

Geometric enrichment

\[\text{cond. number} = \frac{\text{larger eigenvalue}}{\text{smaller eigenvalue} \neq 0} \]

\[Nc \ C^k > Nc \ C^0 \]

GFEM-C^k

GFEM-C^0

M1, M2, M3, M4
Eigenvalues distribution X enrichment

- Geometric pattern;
- Uniform p-enrichment

Continuous partition of unity with C-6FEM
Defining an approximation subspace
Enrichment patterns and convergence rates
Quality assessment through global measures
Configurational forces method
Quality assessment through local measures
Smoothness, enrichments and conditioning
Some improvements beyond...
Eigenvalues distribution \(X \) enrichment

Topologic enrichment

Continuous partition of unity with C-GFEM

Defining an approximation subspace

Enrichment patterns and convergence rates

Quality assessment through global measures

Configurational forces method

Quality assessment through local measures

Smoothness, enrichments and conditioning

Some improvements beyond...
Exact error dispersion \((u_y - u_{yh})\)

Continuous partition of unity with \(C\text{-GFEM}\)
Defining an approximation subspace
Enrichment patterns and convergence rates
Quality assessment through global measures
Configurational forces method
Quality assessment through local measures
Smoothness, enrichments and conditioning
Some improvements beyond...
Concluding remarks

- Continuous stress fields around singularity provide better severity crack parameters
- Polynomial enrichments together with branch functions may adaptively improve the stress fields
- Continuity may conduct to better computation of nodal Eshelby forces
Acknowledgements

National Council for Scientific and Technological Development
Ministry of Science, Technology and Innovation of Brazil
Thank you!

mendonca@grante.ufsc.br